skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharma, Shubham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The mechanism of separation methods, for example, liquid chromatography, is realized through rapid multiple adsorption‐desorption steps leading to the dynamic equilibrium state in a mixture of molecules with different partition coefficients. Sorting of colloidal particles, including protein complexes, cells, and viruses, is limited due to a high energy barrier, up to millions kT, required to detach particles from the interface, which is in dramatic contrast to a few kT for small molecules. Such a strong interaction renders particle adsorption quasi‐irreversible. The dynamic adsorption‐desorption equilibrium is approached very slowly, if ever attainable. This limitation is alleviated with a local oscillating repulsive mechanical force generated at the microstructured stimuli‐responsive polymer interface to switch between adsorption and mechanical‐force‐facilitated desorption of the particles. Such a dynamic regime enables the separation of colloidal mixtures based on the particle‐polymer interface affinity, and it could find use in research, diagnostics, and industrial‐scale label‐free sorting of highly asymmetric mixtures of colloids and cells. 
    more » « less
  2. Abstract The mechanism of separation methods, for example, liquid chromatography, is realized through rapid multiple adsorption‐desorption steps leading to the dynamic equilibrium state in a mixture of molecules with different partition coefficients. Sorting of colloidal particles, including protein complexes, cells, and viruses, is limited due to a high energy barrier, up to millions kT, required to detach particles from the interface, which is in dramatic contrast to a few kT for small molecules. Such a strong interaction renders particle adsorption quasi‐irreversible. The dynamic adsorption‐desorption equilibrium is approached very slowly, if ever attainable. This limitation is alleviated with a local oscillating repulsive mechanical force generated at the microstructured stimuli‐responsive polymer interface to switch between adsorption and mechanical‐force‐facilitated desorption of the particles. Such a dynamic regime enables the separation of colloidal mixtures based on the particle‐polymer interface affinity, and it could find use in research, diagnostics, and industrial‐scale label‐free sorting of highly asymmetric mixtures of colloids and cells. 
    more » « less